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Abstract

The coupled bending and torsional vibration of a fiber-reinforced composite cantilever with an edge
surface crack is investigated. The model is based on linear fracture mechanics, the Castigliano theorem and
classical lamination theory. The crack is modeled with a local flexibility matrix such that the cantilever
beam is replaced with two intact beams with the crack as the additional boundary condition. The coupling
of bending and torsion can result from either the material properties or the surface crack. For the
unidirectional fiber-reinforced composite, analysis indicates that changes in natural frequencies and the
corresponding mode shapes depend on not only the crack location and ratio, but also the material
properties (fiber orientation, fiber volume fraction). The frequency spectrum along with changes in mode
shapes may help detect a possible surface crack (location and magnitude) of the composite structure, such
as a high aspect ratio aircraft wing. The coupling of bending and torsion due to a surface crack may serve as
a damage prognosis tool of a composite wing that is initially designed with bending and torsion decoupled
by noting the effect of the crack on the flutter speed of the aircraft.
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1. Introduction

Fiber-reinforced composite materials have been extensively used in high-performance structures
where high strength-to-weight ratios are usually demanded, such as applications in aerospace
structures and high-speed turbine machinery. As one of the failure modes for the high-strength
material, crack initiation and propagation in the fiber-reinforced composite have long been an
important topic in composite and fracture mechanics communities [1]. Cracks in a structure
reduce the local stiffness such that the change of vibration characteristics (natural frequencies,
mode shapes, damping, etc.) may be used to detect the crack location and even its size. A large
amount of research was reported in recent decades in the area of structural health monitoring, and
literature surveys can be found for cracks in rotor dynamics [2], and in beam/plate/rotor
structures [3]. To prevent possible catastrophic failure when initial cracks grow to some critical
level, early detection and prognosis of the damage is considered a valuable task for on-line
structural health monitoring.

Compared to vast literature on crack effects to isotropic and homogeneous structures, much
less investigation on dynamics of cracked composite structures was reported, possibly due to the
increased complexity of anisotropy and heterogeneity nature of the material. In late 1970s,
Cawley and Adams [4] detected damage in composite structures based on the frequency
measurement. The concept of local flexibility matrix for modeling cracks [5] was extended to
investigate cracked composite structures by Nikpour and Dimarogonas [6]. The energy release
rate for the unidirectional composite plate was derived with an additional coupled term of the
crack opening mode and sliding mode. The coefficient of each mode as well as of the mixed
interlocking deflection mode in the energy release equation is determined as a function of the fiber
orientation and volume fraction. The anisotropy of the composite greatly affects the coefficients.
Nikpour later applied the approach to investigate the buckling of edge-notched composite
columns [7] and the detection of axisymmetric cracks in orthotropic cylindrical shells [8]. Effects
of the surface crack on the Euler—Bernoulli composite beam was investigated by Krawczuk and
Ostachowicz [9] considering the material properties (fiber orientation and volume fraction). Song
et al. [10] studied the Timoshenko composite beam with multiple cracks based on the same
approach of modeling cracks with the local flexibility. To avoid the nonlinear phenomenon of the
closing crack, cracks in these papers mentioned above are all assumed open.

The motivation of this investigation stems from the fracture of composite wings in some
unmanned aerial vehicles (UAVs) deployed in the last few years such as the Predator [11]. The
relative large wing span and high aspect ratio are the usual design for the low-speed UAVs.
Surface cracks and some delamination near the wing root are suspected as the main fracture
failure for the aircraft under cyclic loading during normal flight or impact loading during
maneuvering, taking off and landing. Vibration characteristics of the cracked composite wing
could be important to the earlier detection and the prevention of catastrophe during flight. This
paper investigates the crack effects to the vibration modes of a composite wing, considering also
the effects of material properties. The local flexibility approach is implemented to model the
crack, based on linear fracture mechanics and the Castigliano theorem. The wing is modeled with
a high aspect ratio cantilever based on the classical lamination theory and the coupled
bending—torsion model presented by Weisshaar [12]. Unidirectional fiber-reinforced composite is
assumed. Analytical solutions with the first few natural frequencies and mode shapes are
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presented. To the authors’ knowledge, vibration of the cracked composite beam with the
bending—torsion coupling has not been studied prior to the work presented in this paper.

2. The local flexibility matrix due to the crack

A crack on an elastic structure introduces a local flexibility that affects the dynamic response of
the system and its stability. To establish the local flexibility matrix of the cracked member under
generalized loading conditions, a prismatic bar with a transverse surface crack is considered as
shown in Fig. 1. The crack has a uniform depth along the z-axis and the bar is loaded with an
axial force Py, shear forces P, and P;, bending moments P4 and Ps, and a torsional moment Pg.

Let the additional displacement be u; along the direction of loading P; and U the strain energy
due to the crack. The Castigliano’s theorem states that the additional displacement and strain
energy are related by

i = 6P, 5
where U has the form U = fg J()da, J(a) = 0U/Ou is the strain energy release rate, and « is the
crack depth. By the Paris equation, u; = 9( [ J(«) do) /OP;, the local flexibility matrix [¢;] per unit

width has the components
du; ot [

Fig. 2 illustrates a fiber-reinforced composite cantilever with an edge surface crack and
unidirectional plies. For an isotropic composite material, Nikpour and Dimarogonas [6] derived
the final equation for the strain energy release rate J(a) as

6 2 6 2 6 6 6 2
J =D, (Z Kln) + D, <Z KHn) + D2 (Z K1n> <Z KHn) + D (Z KIHn) , (2
n=1 n=1 n=1 n=1 n=1
where K, Kip,, and Kjyy, are stress intensity factors (SIF) of mode I, II, and III, respectively,
corresponding to the generalized loading P,. Here, mode I is the crack opening mode in which the
crack surfaces move apart in the direction perpendicular to the crack plane, while the other two
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Fig. 1. A prismatic bar with a uniform surface crack under generalized loading conditions.
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Fig. 2. Unidirectional fiber-reinforced composite cantilever with an open edge crack.

are associated with displacements in which the crack surfaces slide over one another in the
direction perpendicular (mode II, or sliding mode), or parallel (mode III, or tearing mode) to the
crack front. Dy, D>, Dy», and D5 are constants defined by

A A
Dl :_£Im<#l+'uz>> D2:¢Im(ul+:u2)s
2 Hiltp 2

Dy = Ay Im(uypy), D3 =3/ AasAss,

with g, and p, the roots of the characteristic Eq. (A.1) in Appendix A. Coefficients Ay, A2, Aaa,
and Ass are also given in Appendix A. Note in Eq. (2) that the first two modes are mixed while the
third mode is uncoupled from the first two modes if the material has a plane of symmetry parallel
to the x—y plane, which is the case under investigation.

2.1. SIF

In general the SIFs K,(j = 1, I, IIT) cannot be taken in the same formats as the counterparts of
an isotropic material in the same geometry and loading. Bao et al. [13] suggested that Kj,(j =
1,11, 11I) for a crack in the fiber-reinforced composite beam can be expressed as

an = O'n\/ﬁan(a/ba Tl/4L/b’ C)s (3)

where o, is the stress at the crack cross-section due to the nth independent force, a is the crack
depth, F;, denotes the correction function, L and b are the beam length and width, respectively,
and 7 and { are dimensionless parameters taking into account the in-plane orthotropy, which are
defined by

E NE»HE
=22, C=ﬂ_\/"12"21a
Ey 2G1,

where the elastic constants Ey, Eq1, G2, V12, and vy are given in Appendix A.
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Following the paper by Bao et al. [13], the term related to t'/*L/b is negligible for t'/*L/h>2.
This condition is fulfilled for the fiber-reinforced composite cantilever in which the aspect ratio
L/b is greater than 4. The SIF in Eq. (3) is then reduced to the form

K, = O'n\/ﬁYn(C)an(a/b): 4

where Y ,({) takes into account the anisotropy of the material, and Fj,(a/b) takes the same form as
in an isotropic material and can be found from the handbook by Tada et al. [14] for different
geometry and loading modes.

For the unidirectional fiber-reinforced composite beam, the SIFs are determined as

12P,4

Ky = o1v/maY({)Fi(a/b), o, _h Ky = a4/maY({)F\(a/b), o4 =55

bh’
6.P5
Ki5s = os/naY(()Fa(a/b), o5 = Pyl Kin=K;3=Ki=0,
P
Kz = o33/maYu({)Fu(a/b), o3 = b_;z’ K = K = Kiu = Kiis = Kig = 0,
P
K = oov/naYm(OFwm(a/b), 62 = b_}zz’
24P¢m? T
K = og/maY Fui(a/b), 66 = —————=cos|{—z),
me = o6v/naYm(O)Fm(a/b), a6 oI — 1901 (h )
Kun = Knuiz = Knis = Kimnis =0, ®)
where
Fi(a/b) = taj £10.752 + 2.02(a/b) + 0.37(1 — sin 1)*] /cos 1, = g—z,
tan A . 4 ,
Fi(a/b) = [0.923 +0.199(1 — sin 2)*] / cos 4,
Fr(a/b) = [1.122 — 0.561(a/b) + 0.085(a/b)* + 0.18(a/b)’] /\/1 —a/b,
tan A
Fin(a/b) = y
and

Y1) = 1+ 0.1(C — 1) — 0.016(C — 1)* +0.002( — 1)%,

Yu() = Ym@ = 1.

In Eq. (5), 0 is the stress along the short edge of the cross-section, determined using the classical
theory of elasticity, as shown in Appendix B.
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2.2. The local flexibility matrix

For the composite cantilever with an edge crack shown in Fig. 2, Eq. (1) becomes

62 h/2 a
Cii = =———— J(o)do dz. (6)
/3PP, /h/z /0

Substitution of Eq. (2) in Eq. (6) yields

62 h/2  pra 5
Ci = 75as [D1(K11 + K14 + K15)
! OPOP; /—h/z/o

+ D2K33 + Dia(Kn 4 Kus 4 Ki5)Kis + D3(Kn + Kine)?] do dz}- (7)

For the composite cantilever under consideration, there are two independent variables—the
transverse and torsional displacements, and one dependent variable—the rotational displacement
of the cross-section. Correspondingly, the external forces the cantilever could take are the bending
moment (P,), the shear force (P,) and the torsional moment (P4) as shown in Fig. 1. Out of all
components in the flexibility matrix only those related to 7, j = 2,4, 6 are needed. It can be shown
that the matrix [C] is symmetric and ¢4 = ¢46 = 0. Based on Eqs. (5) and (7) the components of
interest in the local flexibility matrix [C] can be determined as

€ = %/{)“ o Fi(ee/b)) doe = @AHI;
cu="T /0 AlF (/D) da = M%;Y%Al,
®)
co6 = m?;fﬁ(i@;hsy /0 AP/ = (nsszjhiD_}n;:zb;)z t

where the dimensionless coefficients are Ay = f(f aF3, (@) da, A = foa aF3(@)dd and @ = a/b.
The final flexibility matrix [5,6] at the crack location for the coupled bending and torsional
vibration is then

¢ 0 e

[C] = 0 Cq4 0 . (9)
6 0 ces

with components given in Eq. (8).
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3. The composite beam model considering coupled bending and torsion

In the preliminary design, it is quite common that an aircraft wing is modeled as a slender beam
or box to study the bending—torsion characteristics. Weisshaar [12] presented an idealized beam
model for composite wings describing the coupled bending—torsion with three beam cross-
sectional stiffness parameters along a spanwise mid-surface reference axis: the bending stiffness
parameter ET; the torsional stiffness parameter GJ and the bending—torsion coupling parameter K.
Note that EI and GJ are not the bending and torsion stiffness of the beam since the reference axis
is not the elastic axis in general. At any cross-section of the beam as shown in Fig. 3 the relation
between the internal bending moment M, the torsional moment 7, and the beam curvature
0*w/0y? and twisting rate d¢p/Qy is expressed as

M EI —K7(w
Uri=l allv) ®
T -K GJ [0)
If a coupling term is defined as ¥ = K/+vEI - GJ as in Ref. [12], it has been shown that
—1<¥<1. The magnitude of ¥ closing to +1 indicates the highly coupled situation while ¥ = 0
indicates no coupling between bending and torsion.

On the other hand, the classical laminated plate theory gives the relation between the plate
bending moments, torsional moment and curvatures as

M Dy Di; Dy Kx
My = D12 D22 D26 Ky . (11)
My, Dis Dy Des Ky

Following the paper by Weisshaar [12] the three stiffness parameters in Eq. (10) may be
determined for high aspect ratio beams (assuming M, = 0 but x, is not restrained) as

D? DDy D?
El =b( Dy —=2), K=2b(Dy— GJ = 4b| Dgg — —1& 12
(D252, k=20~ 2p0%), w-DE), )

where bending stiffnesses D11, D»>, Dgg, D12, D16, and D¢ are given in Appendix A. It may be of
interest to know that, for the assumption of chordwise rigidity (w(x, y) = w(0, y) — x¢p(»), kx = 0,
but M, #0), the second term in Eq. (12) disappears and only the first term is left for EI, K, and
GJ. This is equivalent to the situation that D;; tends to infinity, or infinite chordwise rigidity.
Once the stiffness parameters EI, K, and GJ are obtained, the free vibration of the coupled
bending and torsion for the composite beam, with damping neglected, is governed by the

w
@
M
X T Ih

Fig. 3. A beam segment with the internal bending moment, torsional moment and deformations.
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equations
EIWY — K¢" +miv =0, GJ¢" — Kw'" — I, =0, (13)

where m is the mass per unit length and 7, is the polar mass moment of inertia per unit length
about y-axis.

Using separation of variables w(y, £) = W(y)e'’, ¢(y, {) = ®(y)e', Eq. (13) is transferred to the
eigenproblem

EIWY — KO" —mo*W =0, GJO' — KW" + I,ow*® = 0. (14)

As shown by Banerjee [15], eliminating either W or @ in Eq. (14) will yield a general solution in
the normalized form

W (&) = Ay cosh af + A, sinh aé + A3 cos BE + Ay sin E + As cos y& + Ag sin ¢,

15
®(¢&) = B; cosh aé + B, sinh aé 4+ B3 cos & + By sin & + Bs cos y& + Bg sin &, (15

where A;_¢ and B,_¢ are related by

B, = kaAz/L, B, = kaAl/L, B; = k/;A4/L,
By = —kyAs/L, Bs=k,As/L, Bs=—k,As/L

and other parameters are defined consequently as
ky = (b —a*)/(ket)), kg =(b— B/ (kB), ky=(b—y"/0r),
with
k=—K/EI,

o =[2(g/3)"* cos(p/3) — a/3]'?,

B =12g/3)"* cos((n — 9)/3) + a/3]',
y=[2g/3)"* cos((x + 9)/3) +a/3]'?,
q=>b+ad/3,

@ = cos”'[(27abc — 9ab — 2a°) /2(a* + 3b)*/?),
a=djc, b=h/c, c=1—K*/(EI-GJ),
a=1,0°L*/GJ, b=mw*L*/EI, ¢=y/L.

Following Ref. [15], the expressions for the cross-sectional rotation @(¢), the bending
moment M(&), the shear force S(¢) and the torsional moment 7(&) are obtained with the
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normalized coordinate & as

O(&) = (1/L)[A;0 sinh aé + Ao cosh aé — A3f sin fE
+ A4fp cos fC — Asy sin & + Agy cos yE],
M(&) = (EI/L*)[4,d cosh af + Ayd sinh aé — A3f3 cos B¢
— Aaf sin BE — As7 cos & — A sin yZ],

S(&) = —(EI/L*)[A 04 sinh aé + Asad cosh aé + A3pp sin &

— Aapp cos BE+ Asy7 sin p¢ — Ag)7 cos yE],

T(&) = (GJ/L?)[A1g, cosh a4 A,g, sinh aé — Azgy cos BE

— Aagy sin € — Asg, cos y¢ — Agg, sin y¢], (16)

where
a="b/, B=b/F, 7="5b/y,

gy = (b — co®)/(ko?), g5 = (b— B/ (kp), g,=(b—cr*)/(ky?).

4. Eigenvalues and mode shapes of the cracked composite cantilever

Let the edge crack be located at ¢, =//L, as shown in Fig. 2. The cantilever beam is then
replaced with two intact beams connected at the crack location by the local flexibility matrix. The
solution of W and @ for each intact beam can be expressed as follows:

Let I' = [cosh a¢é sinh aé cos B¢ sin BE cos p¢ sin pé]T, then for
0<¢<é,,

Wi(8) =[A1 Ay A3 Ay As Ag)l’, ©1(E) = [By B> By B4 Bs Bg|I', (17a)
E<E<,
Wi (&) = [A7 Ag Ay Aro A1 Ai2]l', ©2(E) = [B7 Bs By Big Bi1 Bio]I'. (17b)

There are 12 unknowns in Eq. (17) since B;_;, are related to A;_;> by the relationships (15).
For the cantilever beam, the boundary conditions require that:
At the fixed end, & =0,

W1(0) = ©1(0) = ®1(0) = 0. (18a—c¢)
At the free end, £ =1,
M>(1) = S(1) = T»(1) = 0. (18d—f)
At the crack location, & = ¢, the local flexibility concept demands
Mi(Co) = Ma(Co), Si(Ce) = Sa(Ce), Ti(E) = Ta(E),
Wi = W) + enSi1(E) + e T1(E,),
02(¢) = O1(C,) + caaM (),
Dr(E) = O1(&e) + c2S1(Ee) + ce6 T1(C0)-

(18g—1)
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Substitution of Egs. (16) and (17) in Eq. (18) will yield the characteristic equation
(414 =0, (19)

where A4 = [A} Ay A3 Ay As Ag A7 Ag Ay A1y A11 A1»]" and [A] s the 12 x 12 characteristic matrix,
a function of frequency.

Solving for det[A] = 0 yields the natural frequencies. Substituting each natural frequency back
to Eq. (19) will give the corresponding mode shape. Note that both the natural frequency and the
mode shape now depend not only on the crack depth and location, but also on the material
properties (fiber orientation and volume fraction).

One issue related to the coupled bending—torsion Eq. (13) is that, for the unidirectional
composite beam in some specific fiber orientation (e.g. at 0° and 90°), bending and torsion will be
decoupled such that Eq. (15) is no longer valid to solve for the eigenvalue problem. Under this
situation the coupled equation simply reduces to two independent equations for bending and
torsion after the separation of variables as

EIWY —mo*W =0, GJO' + I,0*® = 0. (20)

The general solution in the normalized form is

W (&) = Ay cosh yé + A, sinh yé 4+ Az cos né + A4 sin né,
®(&) = By cos oé + By sin ¢¢,
where # = (mw*L*/EN'*, ¢ = (I,w*L*/GJ)"?, and m and I, are defined the same as in Eq.

(13).
Similarly, let I'y =[cosh ¢ sinh ¢ cos né sin né]t, I's =[cos ¢ sin o¢]", then for
0<¢<Ce,

Wil =[41 A2 A5 A4, ©1() = [B1 Bo]l, (21a)
<<,
Wy(&) =[As As A7 Ag]I"1,  D2() = [B3 B4]ls. (21b)

There are still 12 unknowns in Eq. (21). Again, the expressions for the cross-sectional rotation
O(¢), the bending moment M (&), the shear force S(&), and the torsional moment 7(¢) become

(&) = (1/L)[A1n sinh n& + Ao cosh né — Asn sin né + Aan cos néj,
M(&) = (EI/LY)[Ain? cosh né + Ayn* sinh né — Asn? cos né — Agn? sin pé],
S(&) = —(EI/L)[A1n* sinh n& + Ayn? cosh né + Az’ sin né — Aan® cos né],

T(¢) = (GJ/L*)[—B)o sin ¢ + Bya cos o).

The boundary conditions are the same as in Eq. (18). Substitution of Egs. (21) and (22) in Eq.
(18) yields the characteristic equation

(22)

[A]4 =0, (23)

where 1& = [A1 A2 A3 A4 A5 A6 A7 Ag Bl Bz B3 B4]T and [/1] 1s still a 12 x 12 characteristic matrix.

The bending—torsion coupling described by Eq. (19) arises from both the equation of motion
and the crack boundary condition. However, in Eq. (23) only the crack contributes to the
coupling between bending and torsion that is initially decoupled by Eq. (20).
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5. Results

The unidirectional composite beam consists of several plies aligned in the same direction. In
each ply (and for the whole laminate) the material is assumed orthotropic with respect to its axes
of symmetry. Material properties of each ply are taken to be: moduli of
elasticity E,, =2.76 GPa, Ey =275.6 Gpa, Poisson’s ratios v, = 0.33, v =0.2, moduli of
rigidity G,, = 1.036 GPa, Gy = 114.8 Gpa, mass densities p,, = 1600kg/m”, p, = 1900 kg/m3.
The subscript m stands for matrix and f for fiber. The geometry of the cantilever is taken to be:
length L = 0.5m, width b = 0.1 m, and height 2 = 0.005 m. In the following sections, 6 stands for
the fiber angle, and ¥V is the fiber volume fraction, n = a/b the crack ratio, and ¢, =1/L the
dimensionless crack location.

5.1. Coefficients of the local flexibility matrix

Once incorporated with the boundary conditions (18g—1), the components in the local flexibility
matrix, Eq. (9), may be expressed in dimensionless formats for further comparison. The
dimensionless constants become

ET 2nDsEl

Cn =2 = enAm with  ep = L

) EI . 24nD, Y1 EI

Cas = Cag— = egqdy with &g = 5L

i GJ . 576D3nhb*GJ
Co6 = Co6 = oA with &6 = b — 19217’

G b e 26T D3bGT
26 = C%ﬁ = &6dm W1 €26 = (n5bh2 — 192h3)L2’

9613 DsbEI
(mSbh? — 1921 L*’

where A; and Ay are dimensionless and defined the same as in Eq. (8). They are functions of
crack ratio only (a/be[0, 1]) and both go to infinity with a/b approaching unity, as shown in Figs.
4 and 5. For a crack ratio close to 1, which means the beam is nearly completely broken, the beam
dynamics suffer severe instability and these coefficients may not be able to describe its vibration
characteristics. The following analysis is focused on the crack ratio up to 0.9.

Coefficients &, €44, €66, £26, and eg are all dimensionless, and are functions of the fiber
orientation, 0, and fiber volume fraction, V. Their variations are shown in Fig. 6.

It is obvious that coefficients &), €44, €66, €26, and &g exhibit double symmetry for 6=0°
and V' =0.5. Among these dimensionless coefficients, &44 has the largest magnitude, followed
by & and then ey and g, with the last two accounting for the coupling effects. In other
words, the bending or torsional mode is affected most by the internal bending or torsional
moment, respectively, whose distribution along the beam has been altered by the surface
crack. The internal shear force plays the least important role by noting its relatively
low magnitude. The dimensionless A; and Ay work as “weighing” factors for the final

Cer = €% = eAmr with e = (24)
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Fig. 4. The dimensionless coefficient A, as a function of the crack ratio a/b. (a) a/be[0, 0.5], (b) a/be0.5, 1].
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Fig. 5. The dimensionless coefficient Aj;; as a function of the crack ratio a/b. (a) a/be[0, 0.5], (b) a/be[0.5, 1].

dimensionless components in the local flexibility matrix. For a crack ratio up to 0.9, A; is always
larger than Ay so that the role of the coefficient 44 is further enhanced. Note that in Eq. (24) only
Ca4 1s affected by A;.

As shown in Eq. (24) that coefficients &y, €44, €66, €26, and &g are normalized with either EI or
GJ, a plot of each coefficient shown in Fig. 6 bears the similar ““shape’ as that of the normalized
stiffness parameter EI or GJ as shown in Fig. 7.

5.2. The bending and torsional stiffness parameters, and the coupling term

The bending and torsional stiffness parameters, EI and GJ, are functions of 6 and V, as shown
in Fig. 7(a) and (c). For 8=0° or 90° (bending and torsion are decoupled), the torsional stiffness
parameter GJ has the same variation with respect to the fiber volume fraction. However the
bending stiffness parameter varies differently. When normalized by the stiffness at the fiber angle
0°, the dimensionless EI(6, V)/EI(0, V) and GJ(0, V)/GJ(0, V') are shown in Fig. 7(b) and (d).

The dimensionless coupling term ¥, as defined by ¥ = K/~/EI - GJ, is the indication of how
“strong” the bending and torsion are coupled, with + 1 indicating the “‘strongest” coupling while
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(b)

0 or 1. For the fiber

volume fraction being 0 or 1, the material is isotropic and homogeneous so that bending and

0° or 90°, or V

Fig. 6. Dimensionless coefficients in Eq. (24) as a function of the fiber angle () and fiber volume fraction (V). (a) &,
(d) €26, (&) €62

(b) &4, (©) &66,

0 indicates no coupling. Fig. 7(e) shows the term with respect to the fiber angle and volume

fraction. Bending and torsion are decoupled when 0

section, and this is consistent

torsion are basically decoupled for the beam with rectangular cross

[9,10].

with previously published results
As shown in the figure, the “‘strong

, while

the coupling is very “weak” for angles between +35°. The variation of the coupling term with

+65°
respect to the fiber angle agrees with the results presented in Ref. [12]. Note that in Fig. 7 the

coupling is expected for fiber angles around

29

and no crack is involved.
Since the stiffness parameters as well as the coupling term are determined by the

material properties (6 and V), natural frequencies of the cantilever will depend not only

b

stiffness parameters (EI and GJ) and the coupling term (¥) are determined by the fiber angle and

fiber volume fraction
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(b)

@

(d)

V), (e) ¥. Note the regions of strong coupling corresponding to § = +65°.

. (¢) GJ, (d) GJ/GJ(O,

)

s

Fig. 7. The stiffness parameters and the coupling term as a function of the fiber angle (0) and fiber volume fraction (V).

(a) EI (b) EI/EI0

on the crack location and its depth, but also on the material properties. The analysis of

the natural frequency changes follows. Three situations are selected in terms of the degree

of coupling.

, its depth and material properties

5.3. Natural frequency change as a function of crack location

0.5. Natural

Assume that the crack is located at £, = 0.3 and the fiber volume fraction is V'
frequencies will be affected by the crack ratio and fiber angle. The first four natural frequencies

are plotted in Figs. 8—11.

(0 and V)
5.3.1. Natural frequency change as a function of crack ratio and fiber angle
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Fig. 8. Variation of the first natural frequency as a function of the crack ratio (a/b) and fiber angle (0). (a) A direct plot,

(b) normalized at = 0 at the individual fiber angle.

(b)

Fig. 9. Variation of the second natural frequency as a function of the crack ratio (a/b) and fiber angle (6). (a) A direct

plot, (b) normalized at n = 0 at the individual fiber angle.

(%]
~
o
[
-

1000

(b)

@

Fig. 10. Variation of the third natural frequency as a function of the crack ratio (a/b) and fiber angle (6). (a) A direct

plot, (b) normalized at # = 0 at the individual fiber angle.
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(b)

Fig. 11. Variation of the fourth natural frequency as a function of the crack ratio (a/b) and fiber angle (0). (a) A direct
plot, (b) normalized at # = 0 at the individual fiber angle.

77777
v

(b)

Fig. 12. Variation of the first natural frequency as a function of the normalized crack location (&) and fiber angle (0).
(a) A direct plot, (b) normalized at § = 90° at different crack location.

When the fiber angle is around 60°, where the bending and torsion are highly coupled,
the frequency reduction with the crack ratio increased has a different pattern as that when
the fiber angle is smaller. For instance, Figs. 9 and 10 indicate an accelerated reduction
of the second and third frequencies with respect to the crack ratio in the region of 6 = 60°. At a
certain crack ratio, the natural frequency is controlled by either the bending or torsional mode
when the fiber angle is small (the coupling is weak). However, when the fiber angle is increased
such that the coupling becomes stronger, the same natural frequency which was previously
controlled by the bending mode (or the torsional mode) becomes controlled by the torsional mode
(or the bending mode). This could be the main reason for the transient region of the frequency
reduction.

5.3.2. Natural frequency change as a function of crack location and fiber angle

Assume that the crack ratio is fixed at # = 0.3 and the fiber volume fraction is V' = 0.5. Natural
frequencies will be affected by the crack location and fiber angle. The first four natural frequencies
are plotted in Figs. 12-15 as follows.

Similar to the results in Section 5.3.1 where the crack ratio and fiber angle are taken as
variables, the frequency change when bending and torsion are highly coupled has a pattern
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(b)
(0). (a) A direct plot, (b) normalized at 6 = 90° at different crack location.

Fig. 13. Variation of the second natural frequency as a function of the normalized crack location (&) and fiber angle

Fig. 14. Variation of the third natural frequency as a function of the normalized crack location (¢.) and fiber angle (0).
(a) A direct plot, (b) normalized at 6 = 90° at different crack location.

(b)
(a) A direct plot, (b) normalized at § = 90° at different crack location.

Fig. 15. Variation of the fourth natural frequency as a function of the normalized crack location (£,) and fiber angle (0).
shape.

different from that when the coupling is “weak” at smaller fiber angles. When the fiber angle is
fixed, the frequency change for different crack locations is affected by the corresponding mode

39
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Fig. 16. Variation of natural frequencies as a function of the crack ratio (a/b) and normalized crack location (&,) for
the highly coupled situation due to material properties. (a) The first natural frequency (fjy, = 75.2rad/s), (b) the
second natural frequency (f,, = 445.6rad/s), (c) the third natural frequency (fiy, = 916.1rad/s), (d) the fourth
natural frequency (fiyuc = 1179.7rad/s).

5.3.3. High coupling between bending and torsion

Assume that 0 = 70° and V' = 0.5. Bending and torsion are highly coupled with ¥ = 0.846. The
natural frequency changes are plotted in Fig. 16.

In general the natural frequencies experience further reduction with the crack ratio increased.
Fig. 16 indicates clearly that for a large crack ratio, the frequencies have different variation in
terms of the crack location. As noticed in Refs. [9,10] where only bending vibration is investigated,
the higher frequency reduction may be expected for the crack located around the largest curvature
of the mode related to the frequency. While the trend is still shown in Fig. 16, the largest
frequency reduction no longer coincides with either the largest bending curvature or torsion
curvature, since the bending and torsional modes usually do not have the largest curvature or
node at the same location.

5.3.4. Low coupling between bending and torsion, and bending—torsion decoupled

When 0 = 30° and V' = 0.5, bending and torsion are weakly coupled with ¥ = 0.0545. The
natural frequency changes are plotted in Fig. 17.

It is obvious that the third natural frequency does not show the similar variation as that in Fig.
16(c) of Section 5.3.3 where bending and torsion are highly coupled. When the coupling due to the
material properties is weak (i.e. the coupling term ¥ is very small), the frequency variation
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Fig. 17. Variation of natural frequencies as a function of the crack ratio (/) and normalized crack location (&,) for
the weakly coupled situation due to material properties. (a) The first natural frequency (fj,,. = 42.35rad/s), (b) the
second natural frequency (fiy,o = 265.42rad/s), (c) the third natural frequency (fi.e = 554.38 rad/s), (d) the fourth
natural frequency (fj,.q = 743.41rad/s).

exhibits quite the similar feature as that where bending and torsion are initially decoupled due to
the material properties, and then coupled only due to the presence of the crack. The frequency
variation for the latter case is shown in Fig. 18.

When 6 = 0° or 90°, the bending and torsion are decoupled if there are no cracks. The natural
frequencies for bending and torsion are listed in Table 1.

However, presence of an edge crack introduces coupling through the additional boundary
condition at the crack location. For # = 0° and V' = 0.5, the natural frequency changes are plotted
in Fig. 18 as a function of the crack ratio and its location.

When the coupling of bending and torsion is introduced by the crack only (no coupling if there
was no crack), the third natural frequency has very similar variation as that of the first natural
frequency. The coupled natural frequency is predominantly controlled by either the bending mode
or the torsional mode, while the surface crack introduces only a “weak” coupling between
bending and torsion. The third coupled frequency is actually close to the first torsional frequency
so that the variation is quite close to that of the first coupled frequency that is controlled by the
first bending mode.

For the situation shown in Fig. 17 where coupling due to material properties is “weak”, the
coupling seems predominantly controlled by the local flexibility due to the crack such that the
frequency variation exhibits a similar trend as in Fig. 18.
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(b)

Fig. 18. Variation of natural frequencies as a function of the crack ratio (¢/b) and the normalized crack location (&.)
for situation that the coupling is introduced by the crack only. (a) The first natural frequency, (b) the second natural
frequency, (c) the third natural frequency, (d) the fourth natural frequency.

Table 1
The first five natural frequencies for 6 =0° and 90°
rad/s 0=0° 0=90°

Ist 2nd 3rd 4th Sth Ist 2nd 3rd 4th Sth
Bending 43.6 273.1 764.7 1498.5 2477.2 181.0 1134.5 3176.7 6225.0 10290.4
Torsion 413.5 1240.6 2067.7 2894.7 3721.8 413.5 1240.6 2067.7 2894.7 3721.8

5.4. Mode shape changes

For theoretical analysis, the change of mode shapes may help detect the crack location as well
as its magnitude, in conjunction with the change of natural frequencies. In the situation of highly
coupled bending and torsion (0 = 70° and ¥V = 0.5 as in Section 5.3.3) due to the material
properties, the first three mode shapes are plotted in Figs. 19-24 for different crack depths and

locations.

5.4.1. For crack at location &, = 0.2

In Figs. 19-24, each mode shape is obtained with the crack ratio at 0.2, 0.4, and 0.6, while the

crack ratio of 0 indicates no cracks.
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Fig. 19. The first mode shapes for £, =0.2, V' =0.5, and 0 = 70° as the crack ratio () changes. ——, n = 0; —————
n=02;------- ,n=04; — -—- -, n=0.6. (a) The first bending mode, (b) the first torsional mode. Note that the

discontinuity increases with the crack ratio at the crack location.
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Fig. 20. The second mode shapes for £, = 0.2, V' = 0.5, and 0 = 70° as the crack ratio (1) changes. ——, n =0; ————— s
n=02-------- ,n=04;—-—- -, n=0.6. (a) The second bending mode, (b) the second torsional mode.
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Fig. 21. The third mode shapes for . = 0.2, V' = 0.5, and 6 = 70° as the crack ratio (1) changes. ——, n = 0; ————— X
n=02-------- ,n=04;— -—- -, n=0.6. (a) The third bending mode, (b) the third torsional mode.

Each of the first three modes is normalized by the value at the free end of the cantilever. The
higher mode seems more sensitive to the crack depth, even though the crack is not located at the
large curvature position. The discontinuity of the torsional mode is more obvious than the
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Fig. 22. The first mode shapes for &, =0.5, V'=0.5, and 6 = 70° as crack ratio () changes. —, y = 0;—————
n=02;-------- ,n=04;— -— ., n=0.6. (a) The first bending mode, (b) the first torsional mode. Note that the

discontinuity increases with the crack ratio at the crack location.
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Fig. 23. The second mode shapes for ¢, = 0.5, V' = 0.5, and 0 = 70° as the crack ratio () changes. ——, y = 0; ————— X
n=02-------- ,n=04;— -—- -, n=0.6. (a) The second bending mode, (b) the second torsional mode.
*F 1} (b) .
2t Lz
0.8 7
1f ,//’
0.6 g
-1F _ - //j
0.4 Pie e
-2 F P - ’/ 4
. e
-3 0.2 P - ,/ //
e B /’
At ;’/, — )
0.2 0.4 0.6 0.8 1
Fig. 24. The third mode shapes for £. = 0.5, V' = 0.5, and 6 = 70° as the crack ratio () changes. —, n = 0; ————

n=02;-------- ,n=04;—- -—- -, n=0.6. (a) The third bending mode, (b) the third torsional mode.
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bending mode. Since the characteristic equation consists of 12 simultaneous equations, any small
deviation from the exact frequency solution changes the magnitude of the mode shape a lot
(especially for the torsional modes). However, the shape and increasing distortion at the crack
location may still be of value to detect the crack location, particularly when both bending and
torsional modes are taken into consideration.

5.4.2. For crack at location &, = 0.5

For the crack located at the mid-point of the cantilever, distortion of higher mode
shapes is even more obvious. Compared with those where only the bending mode,
either for the Euler—Bernoulli beam or for the Timoshenko beam, is studied, the change
of mode shapes due to the crack for the composite beam with bending and torsion coupled
i1s more significant. This change may be utilized to locate the crack as well as to quantify its
magnitude.

6. Conclusion

A composite cantilever beam with an edge crack and of high aspect ratio vibrates in coupled
bending and torsional modes, either due to the material properties, due to the crack or both. The
beam consists of several fiber-reinforced plies with all fibers orientated in the same direction. The
local flexibility approach based on linear fracture mechanics is taken to model the crack and a
local compliance matrix at the crack location is derived. Changes in natural frequencies and mode
shapes are investigated. Some observations include:

(1) The dimensionless coefficients of the compliance matrix exhibit double symmetry with respect
to the fiber orientation and fiber volume fraction. The internal bending moment distribution
due to the crack affects the bending mode most significantly through the local flexibility
matrix; the effect is the same for the torsional mode; the internal shear force distribution plays
the least role in the local flexibility.

(2) The decrease of natural frequencies for a cracked composite beam depends not only on the
crack location and its depth, but also on the material properties, as shown in Ref. [9] for an
Euler—Bernoulli beam. However, for the composite cantilever with bending and torsional
modes coupled, the largest frequency reduction no longer coincides with either the largest
bending or torsion curvatures.

(3) The “‘strong” coupling between the bending and torsion is observed for fiber angles around
+60°, while the coupling is “weak” for fiber angles between +35°. The frequency variation
with respect to either the crack ratio or its location usually experiences a transient state when
the coupling is “‘strong”, such that the pattern is significantly different from the “weakly”
coupled case. At this transient state the frequency variation previously controlled mainly by
the bending mode (or the torsional mode) becomes controlled by the torsional mode (or the
bending mode).

(4) When the fiber angle is 0 or +90°, bending and torsion are decoupled if there is no crack. The
edge crack introduces the coupling to the initially uncoupled bending and torsion. The
decrease of natural frequencies exhibits a similar pattern as that when the fiber angle is
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between +35°; the pattern is predominantly controlled by either bending or torsional mode,
but not both.

(5) The coupled mode shapes are more sensitive to both the crack location and its depth. Higher
modes exhibit more distortion at the crack location.

An analytical model of a fiber-reinforced composite beam with an edge crack has been
developed. The spectrum of the natural frequency reduction, along with observations on the mode
shape changes indicated by this model, may be used to detect both the crack location and its depth
for on-line structural health monitoring. When the cracked beam vibrates with a specific loading
spectrum, the model presented in this paper may help analyze the stress distribution around the
crack tip such that a crack propagation model may be developed to investigate damage prognosis,
and make predictions regarding the behavior of the structure to future loads. For instance these
results may be useful for predicting flutter speed reduction in aircraft with composite wings due to
fatigue cracking.
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Appendix A. Material properties of a single ply

The complex constants yu;, u, in Eq. (2) are roots of the characteristic equation [1]
Appt = 24160° + QA1 + Age)? — 2Apsp + Az = 0, (A1)
where the compliances Ay;, A», A2, Ais, Az, Aes are defined by

Ay = Ayum* + (2412 + Ae)m™n® + Apn®,
Ax = Ann® + QA1 + Age)m*n® + Apm’,
Ay = (411 + A — Age)™n” + App(m”* + n*),
Al = (2411 — 2412 — Aee)'n — (24 — 241, — Ase)mi’,
Az = (2411 — 2412 — Ae)m® — (24, — 241, — Aee)nr'n,

Ags = 2QA11 + 245 — 441y — Age)m*n® + Ag(m* + n*),

with m = cos 6, n = sin 6, and 6 being the angle between the geometric axes of the beam (x—y) and
the material principle axes (1-2) as shown in Fig. 2. The roots are either complex or purely
imaginary, and cannot be real. The constants u; and u, correspond to those with positive
imaginary parts.
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Constants A1, A»», A1», Ags are compliance elements of the composite along the principle axes
and directly relate to the mechanical constants of the material [16]. Under the plane strain
condition,

1 Ey ) 1 > V12
A11=—(1——V , An=——10-vy), Ap=-——-—(1+y3).
Eyy E; Ex 3 Evy
Under the plane stress condition,
1 1 V12 Va1
Ay =—, Ap=——, Ap=—F7"=———.
E]] E22 Ell E22

To study the third crack mode, other compliances for both the plane strain and plane stress can
be found to be

Auga =G Ass = A = .

The mechanical properties of the composite, Eq, Exn, vi2, v23, G2, Ga3, p, can be found
[1] to be

Ef+Em+(E/'_Em)V
Enw=E/V+E,(1-V), Ex=Exs=E : ,
1 1V + En( ), Ex 3 "E ¥ Ey — By — Em)V

Vio =vi3 = vV 4+ (1 = 1),

14+ vy —vi2En/E

Vi3 =vn =vV +v(l = V) 1 —v2 +vviEn/En’
m

Gr+ G+ (Gr — G,)V
G = G == Gm 5
12 B Gf + Gy — (Gf - Gm)V

__ E»
2(1 + V23)
where subscript m stands for matrix and f for fiber. V is the fiber volume fraction.

Also based on the mechanical properties determined above as well as the ply orientation, the
bending stiffness D;; in Eq. (11) can be determined [17] by

Dy = Qym* + Qpn* +2(0); + 2Q66)m2n27

G23 > P = pr+pn1(1 - V):

Dy = Qi + Qpom®* +2(015 + 2Q0¢)m*n?,
Dio = (Q11 + O — 4Qg)m’n® + Qpy(m* + n*),
Dis = ma[Qym* — Qppn® — (@ + 2Qge)m* — )],
Das = mn[Qyn* — Qpym” + (Qyz + 2Qge)(m” — 1),

Do = (Q11 + O — 201)m*n* + Qge(m* — n*)’,
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where

Eq; Ey
0y

Q11 =

with I = /4*/12 the unit width cross-sectional area moment of inertia of the beam.

I, Q= 0val = 0pvi2l, Qg = Gr2d,

LI § -2
1 —viovoy 1 —viovoy

Appendix B. The stress along the short edge of a rectangular cross-section

Consider the beam with rectangular cross-section as shown in Fig. 2 for stress analysis under
the torsional moment 7. With 5>/, the stress distribution on the cross-section can be found in the
classical theory of elasticity. Specifically the stress along the short edge, 7y:| _ ., /2> can be found
[18] to be

Tyz

8k } [ (=1)" sinh(k, +5b/2)
x=tb/2 = 2 P (2n+ 1)* cosh(k,b/2)

n=0
where k, = (2n + 1)n/h, and po relates to the torsional moment by

bh*  64h* S tanh(k,b/2)
T'=pou| ———— — |-
3 T L= (2n+1)

For b/h>2, 1> tanh (nbh/2h)>0.9963, truncating the series in Eqgs. (B.1) and (B.2) with the
first term will result in 92% and 99.5% accuracy of the analytical solution for the stress and
moment, respectively. With only the first term in both summations along with the approximation
tanh (zb/2h) = 1, eliminating uo in Egs. (B.1) and (B.2) and taking the magnitude of the stress
along the short edge yield

cos(knz)] , (B.1)

(B.2)

Tyz

24T 73 (7‘5 >

= ——5COS| — .
bt — 19218 o\~
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